刷同学2025-02-27 16:17:29
与本题关系不大,在二叉树模型中,为什么hedge ratio=Delta(call)=Delta(put),而BSM model中,Delta(put)=Delta(call)-1??
回答(2)
Essie2025-02-28 11:17:27
同学你好,在二叉树模型中,Delta是通过构建一个对冲策略来衡量的。假设有一个“无风险”的对冲策略,在这种策略下,Delta表示持有多少份标的资产(例如股票)才能对冲期权的风险。在期权的Delta对冲中,如果期权是看涨期权(call),Delta是期权价格对股票价格变动的敏感度。对于看跌期权(put),Delta也是对股票价格变动的敏感度。由于在二叉树模型中,不考虑利率、到期时间等因素的复杂交互,且假设对冲是完美的,所以在一些二叉树模型的实现中,Delta(call)和Delta(put)是相等的。也就是说,在某些简化的二叉树模型中,我们得出Delta(call)= Delta(put),即它们在对冲策略下的敏感度是相同的。这主要是模型的设定和简化所导致的。
而在在BSM模型中,Delta(call)和Delta(put)之间有一个明确的关系。BSM模型中的Delta(call)表示的是期权价格相对于标的资产价格变动的敏感度,而Delta(put)的计算方法则不同。
对于看涨期权(call),Delta是正的,表示标的资产价格上涨时,期权价值增加。对于看跌期权(put),Delta是负的,表示标的资产价格上涨时,期权价值下降。在BSM模型中,delta put=delta call-1,也就是说,虽然看涨期权和看跌期权的Delta都与标的资产的价格变动有关,但由于看跌期权与标的资产价格变动的方向是相反的(价格上升时,call价值增加,而put价值减少),因此Delta(put)和Delta(call)之间会有一个差异,这个差异通常是-1。
- 评论(0)
- 追问(0)
180****86962025-02-28 20:54:18
In the binomial tree model, the hedge ratio (also known as Delta) for both call and put options is equal because, in this discrete model, the underlying asset can move up or down in small increments, and the hedging strategy is designed to offset the changes in the option´s value for both types of options. The hedge ratio essentially represents the number of shares needed to hedge one option, and in the binomial model, the relationship between the option and the underlying asset is symmetric, regardless of whether it is a call or a put. However, in the Black-Scholes-Merton (BSM) model, the relationship is different because the Delta of a put option is not symmetric to the Delta of a call option. In the BSM model, Delta for a put option is calculated as the negative of the call´s Delta adjusted by 1, i.e., Delta(put) = Delta(call) - 1. This difference arises because, unlike the call option, the value of a put option decreases when the price of the underlying asset increases.
- 评论(0)
- 追问(0)


评论
0/1000
追答
0/1000
+上传图片