frr07172018-08-28 17:57:57
为什么: 处于实值的不付红利的股票欧式看跌期权theta > 0? 谢谢老师!
回答(1)
Wendy2018-08-29 09:23:41
同学你好,举个极端的例子,一个欧式put,执行价格为10元,当前资产价格是0(极端例子),此时这个put是deep ITM的,时间流逝对它而言是好的,最好现在到期,就行权,我可以拿到全部的10元。如果距离到期还有一段时间,那么这个标的资产的价格是很有可能上涨的(因为不可能为负的),获得的收益就会小于10元。所以对于一个deep ITM的欧式put,theta是大于零的。时间流逝对它是正的影响
- 评论(0)
- 追问(12)
- 追问
-
您的意思我懂, 现在我的纠结在于:
- 追问
-
"时间流逝对它而言是好的"这句话, 现在资产价格已经不能再低于零了, 那么应该是马上到期最好, 马上到期不是说明时间流逝越短越好吗? 那应该是theta小于零才好啊
- 追问
-
您说的道理我明白, 就是这个"时间流逝"应该反过来啊我觉得....谢谢老师!
- 追答
-
时间流逝对它而言是好的
现在到期,就说明时间已经全部流逝完了
- 追问
-
嗯嗯, 那为什么是T越大越好......还是不懂哇
- 追答
-
同学你好,你这个T是哪里T?这个T时间有两个方面,一个是剩余时间,一个是流逝的时间,这两个概念正好是相对的。我们这里的theta其实强调的是流逝的时间,流逝的时间越多,即剩余的时间越少,通常来说期权而言是不好的。所以theta是负的。
- 追问
-
我知道啊, T是passage of time
- 追问
-
然后呢....?还是没想通
- 追答
-
一般的期权时间流逝对它是不好的,所以theta是负的。对于deep ITM put 时间流逝对它是好的,所以theta是正的
- 追问
-
您能不能从公事上说一下, 正负的问题.....光理解是可以理解的, 但是从公式上帮我演算一下吧, 谢谢老师!
- 追问
-
公式 打错了
- 追答
-
这个是原版书中给的theta的公式。在FRM考试中,能够理解它的含义就可以了。不做过多要求


评论
0/1000
追答
0/1000
+上传图片